SMITHS PERFORM IN AEROSPACE

Recommendations for the HUMS R&D Plan – Smiths Perspectives

FAA HUMS Research Review Meeting

9 December 2004

Smiths Study

- HUMS manufacturer input to the development of a HUMS R&D plan for near-term (5 year) and long-term (10 year) goals.
- Report delivered Nov 2004
- Study Considered:
 - Background and Current State of Health and Usage Monitoring Systems
 - Issues for R&D in FAA Areas of Interest
 - Analysis of Future HUMS Requirements
 - Gap Analysis
 - Recommended FAA Sponsored R&D Projects

Issues for R&D in FAA Areas of Interest

Use of HUMS to support fault-tolerant aircraft design Improvement of HUMS sensor technologies Use of HUMS for on-board crew warnings

Issues Related To COTS HUM Systems

Obsolescence

 Verify that hardware and software can be upgraded without having to re-certify

Open Systems Data Integrity

- Internet Viewing
- Viruses and worms
- Use of third party data viewers
- Transfer of the data over the internet

Flexibility

- Incorporation of new reports
- User configurability

Use Of HUMS To Support Fault-Tolerant Design

Two primary areas of opportunity to support damage tolerance:

- Quantification of the operational usage of the mechanical components
- Provision of the ability to detect damage once it has occurred within the component

Usage monitoring

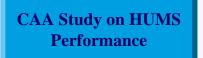
- Monitor the loads that a given component experiences
- Provide information on how damaging an environment an individual component has been exposed to

Damage detection

- HUMS has been proven in an operational environment to detect faults
- Improvements in sensor technologies required for HUMS to be the sole means of detection

Improvement Of HUMS Sensor Technologies

Identify a rationale for the advancement of:


- Sensor technologies
- Signal processing techniques
- Data mining and analysis technologies
- Automated reasoning technologies

This analysis utilizes:

- Smiths Aerospace database of HUMS in-service experience
- Information on accidents and incidents to HUMS

Effectiveness of HUMS

- Must consider complete chain that ends in the decision being made
- Chain includes:
 - Appropriate sensors
 - Algorithms that extract component health information
 - Alerting strategies and methodologies that trigger human intervention at the appropriate time
 - Unambiguous diagnostic and prognostic information to guide appropriate maintenance actions
 - Operational policies, procedures and trained personnel

On-board Warning to Flight Crew

- Provision and use of HUMS to provide on-board warning to flight crew has long been an area of debate:
 - Logical extension of ground based fault detection
 - Cockpit indication needs to have a sufficiently low false alarm rate and be linked to specific operating instructions
- UK Air Accident Investigation Branch issued a recommendation that:
 - "The CAA should develop the concept of providing flight deck display of HUMS exceedance information, including vibration, to flight crew"
- Helicopter Health Monitoring Advisory Group (HHMAG) set up a working group to review this recommendation

On-board Warning to Flight Crew (2)

Summary

- In order to develop in-flight warning or the use of HUMS as an ondemand information source for the aircrew, the following areas will require further analysis:
 - Better understanding of the distribution of warning reliability by the mechanical component and health indicators
 - Potential for the advanced anomaly detection methodologies to be implemented in an on-board system
 - Methodologies for the presentation of health status information to the aircrew and integration with operational procedures

Analysis of Future HUMS Requirements

Future HUMS Requirements

System architecture

- On board processing
- On board storage
- Avionic integration

Sensors / monitoring

- Swashplate
- Continuous monitoring

Usage

- Expanded structural and transmission usage monitoring
- Derived parameters

FOQA / HOMP

Operational monitoring

Future HUMS Requirements

Anomaly Detection

Multivariable anomaly detection

Diagnostics

Automated diagnostics

Prognostics

Predictive capability

Data Management

- Integrated download from vehicle
- Centralized data management
- Support for deployed operations

Infrastructure

Integration with maintenance manuals and procedures

Gap Analysis

Gap Analysis

Validation of Certification procedures

- Functionality of one component may be partitioned and certified to different levels
- Use of automated testing to reduce certification costs
- HUMS software configuration is typically modified throughout the product lifecycle
- HUMS data is stored in remote databases and viewed through an Internet browser or web-enabled application

COTS Issues

- Windows OS changes frequently due to service packs and updates
- Ground based system can be connected to a network or the Internet
- Wireless data transfer

Gap Analysis

Advancement and Demonstration of Sensor Technologies

- Rotor system fault detection
- Improved effectiveness of epicyclic stage monitoring
- Enhanced anomaly detection
- Automated diagnostics
- Prognostics
- Integration with maintenance practices / policy
- Oil condition monitoring

On Board Warnings

- False alarm rate requirements
- Use of on-demand information by aircrew
- Use of health status information pre and post flight

Recommended FAA Sponsored R&D Projects

Automated testing
System partitioning
Automated diagnostic reasoning
Strategy for prognostics
Cockpit indications

Automated Testing

- Potential to reduce the overall cost and time required for certification
- Research the impact of automated testing on the certification process

Plan

- Analyze the various forms and tools associated with automated testing
- Analyze the utilization of automated testing in a project
- Implement automated testing on a portion of the system
- Verify the tests capture potential failures

Goal

- Develop and demonstrate automated testing for HUMS
- Report to detail the guidelines for the implementation and execution of automated testing

Cost

- Program is scalable
- Estimated duration of one to two years

System Partitioning

- Potential to reduce the overall cost and time required for recertification
- Research the partitioning of the HUMS into many sub-certifiable parts to reduce the effort associated with the recertification process
- Plan
 - Analyze and detail all of the systems and subsystems in the HUMS
 - Verify the changes in one partition do not impact the other partitions
 - Provide recommendations to the FAA

Goal

- Develop and demonstrate the partitioning of the HUMS into certifiable components to reduce the amount of the system that must be tested when a change is incorporated
- Report suggested modifications or updates to the advisory circular

Cost

- Program is scalable
- Estimated duration of one to two years

Automated Diagnostic Reasoning

 Develop and test an intelligent HUMS data management system that incorporates new anomaly detection and diagnostic techniques

Plan

- Develop reasoning technology based on Causal Networks for HUMS.
- Demonstrate automated reasoning technology on real-world data
- Provide solutions for some of the difficult knowledge engineering tasks

Goal

- Develop and demonstrate an automated reasoning system for HUMS
- Provide improved diagnosis of mechanical faults on the helicopter drive system
- Outcome will aid the development of HUMS related aircraft maintenance procedures to help improve maintenance effectiveness and reduce operating cost

Cost

Two year program

Strategy for Prognostics

 Extend the significant research that is being performed on modelbased prognostics for simple configurations by investigating complex configurations

Plan

- Research multi-dimensional strategy for the achievement of a practical prognostic capability
- Address requirements for the practical application of the strategy
- Ensure effective supervision of prognostic outputs

Goal

- Perform research into a practical strategy for the implementation of HUMS prognostics
- Optimize the planning of future maintenance while ensuring continued airworthiness
- Demonstrate the strategy using real data for several prognostic scenarios

Cost

Two year program

Cockpit Indications

 Address the validity of providing both warnings and supplementary on-demand health information to aircrews

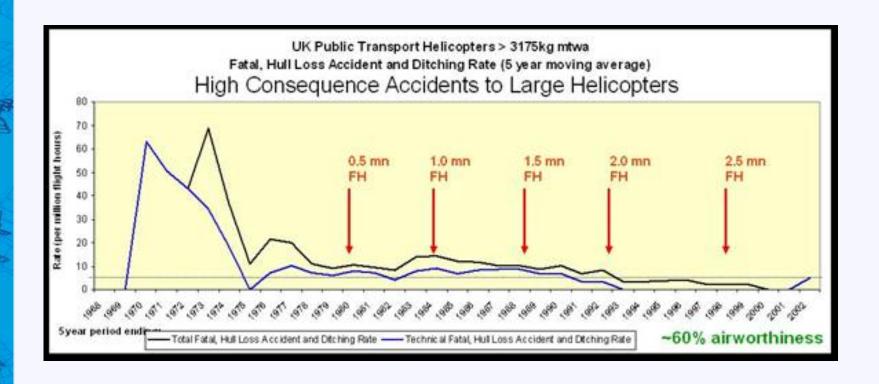
Plan

- Perform a study based on existing operational databases into the distribution of health indicator reliability
- Investigate the human factors issues associated with the presentation of health information to the aircrew

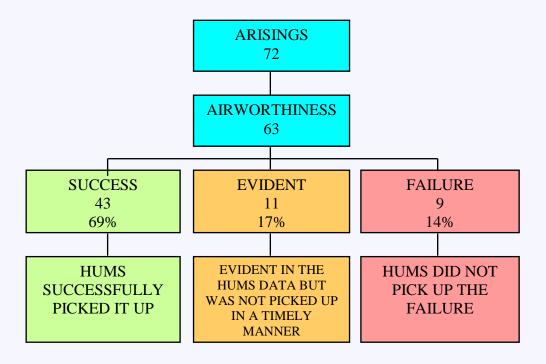
Goal

- Research distribution of health indicator reliability by mechanical component
- Identify a subset of the health monitoring dataset where there is sufficient confidence that the use of the data in the cockpit can be considered.
- Recommend the appropriate human factors associated with providing health information to the aircrew.

Cost


Two year program

BACKUP SLIDES



UK accident statistics

CAA study on HUMS performance

- Key incidents and accidents involving HUMS equipped helicopter
 - AS332L Super Puma GPUMH 27th September 1995
 - AS332L Super Puma LNOPG 8th September 1997
 - AS332 Super Puma
 - Sikorsky S76 G-BJVX 16th July 2002
 - Sikorsky S61-N G-BBHM

Summary

- The weakness of the current generation of HUMS can be divided into two categories:
 - Mechanical components of the helicopter where HUMS has had a lower success rate in detecting faults
 - Process leading to a maintenance or airworthiness decision on the helicopter
- Mechanical components
 - Rotor system faults
 - Main transmission epicyclic stages
 - Accessory gearboxes
- Process related
 - Fault isolation
 - Prognostics
 - Self monitoring

